查看: 3274|回复: 0
打印 上一主题 下一主题

[机器学习] 多图|一文看懂25个神经网络模型(三)

[复制链接]

146

主题

3

听众

1503

积分

助理设计师

Rank: 4

纳金币
1794
精华
4
跳转到指定楼层
楼主
发表于 2018-6-6 16:11:10 |只看该作者 |倒序浏览

生成式对抗网络(GAN)

12.jpg

生成式对抗网络(GAN:Generative adversarial networks)是一类不同的网络,它们有一对“双胞胎”:两个网络协同工作。

GAN可由任意两种网络组成(但通常是FF和CNN),其中一个用于生成内容,另一个则用于鉴别生成的内容。

鉴别网络(discriminating network)同时接收训练数据和生成网络(generative network)生成的数据。鉴别网络的准确率,被用作生成网络误差的一部分。这就形成了一种竞争:鉴别网络越来越擅长于区分真实的数据和生成数据,而生成网络也越来越善于生成难以预测的数据。这种方式非常有效,部分是因为:即便相当复杂的类噪音模式最终都是可预测的,但跟输入数据有着极为相似特征的生成数据,则很难区分。

训练GAN极具挑战性,因为你不仅要训练两个神经网络(其中的任何一个都会出现它自己的问题),同时还要平衡两者的运行机制。如果预测或生成相比对方表现得过好,这个GAN就不会收敛,因为它会内部发散。

游客,如果您要查看本帖隐藏内容请回复


循环神经网络(RNN)

13.jpg

循环神经网络(RNN:Recurrent neural networks)是具有时间联结的前馈神经网络:它们有了状态,通道与通道之间有了时间上的联系。神经元的输入信息,不仅包括前一神经细胞层的输出,还包括它自身在先前通道的状态。

这就意味着:你的输入顺序将会影响神经网络的训练结果:相比先输入“曲奇饼”再输入“牛奶”,先输入“牛奶”再输入“曲奇饼”后,或许会产生不同的结果。RNN存在一大问题:梯度消失(或梯度爆炸,这取决于所用的激活函数),信息会随时间迅速消失,正如FFNN会随着深度的增加而失去信息一样。

直觉上,这不算什么大问题,因为这些都只是权重,而非神经元的状态,但随时间变化的权重正是来自过去信息的存储;如果权重是0或1000000,那之前的状态就不再有信息价值。

原则上,RNN可以在很多领域使用,因为大部分数据在形式上不存在时间线的变化,(不像语音或视频),它们能以某种序列的形式呈现出来。一张图片或一段文字可以一个像素或者一个文字地进行输入,因此,与时间相关的权重描述了该序列前一步发生了什么,而不是多少秒之前发生了什么。一般来说,循环神经网络是推测或补全信息很好的选择,比如自动补全。

游客,如果您要查看本帖隐藏内容请回复


长短期记忆(LSTM)

14.jpg

长短期记忆(LSTM:Long / short term memory)网络试图通过引入门结构与明确定义的记忆单元来解决梯度消失/爆炸的问题。

这更多的是受电路图设计的启发,而非生物学上某种和记忆相关机制。每个神经元都有一个记忆单元和三个门:输入门、输出门、遗忘门。这三个门的功能就是通过禁止或允许信息流动来保护信息。

输入门决定了有多少前一神经细胞层的信息可留在当前记忆单元,输出层在另一端决定下一神经细胞层能从当前神经元获取多少信息。遗忘门乍看很奇怪,但有时候遗忘部分信息是很有用的:比如说它在学习一本书,并开始学一个新的章节,那遗忘前面章节的部分角色就很有必要了。

实践证明,LSTM可用来学习复杂的序列,比如像莎士比亚一样写作,或创作全新的音乐。值得注意的是,每一个门都对前一神经元的记忆单元赋有一个权重,因此会需要更多的计算资源。

游客,如果您要查看本帖隐藏内容请回复


门循环单元(GRU)

15.jpg

门循环单元(GRU : Gated recurrent units)是LSTM的一种轻量级变体。它们少了一个门,同时连接方式也稍有不同:它们采用了一个更新门(update gate),而非LSTM所用的输入门、输出门、遗忘门。

更新门决定了保留多少上一个状态的信息,还决定了收取多少来自前一神经细胞层的信息。重置门(reset gate)跟LSTM遗忘门的功能很相似,但它存在的位置却稍有不同。它们总是输出完整的状态,没有输出门。多数情况下,它们跟LSTM类似,但最大的不同是:GRU速度更快、运行更容易(但函数表达力稍弱)。

在实践中,这里的优势和劣势会相互抵消:当你你需要更大的网络来获取函数表达力时,这样反过来,性能优势就被抵消了。在不需要额外的函数表达力时,GRU的综合性能要好于LSTM。

游客,如果您要查看本帖隐藏内容请回复


神经图灵机(NTM)

16.jpg

神经图灵机(NTM: Neural Turing machines)可以理解为对LSTM的抽象,它试图把神经网络去黑箱化(以窥探其内部发生的细节)。

NTM不是把记忆单元设计在神经元内,而是分离出来。NTM试图结合常规数字信息存储的高效性、永久性与神经网络的效率及函数表达能力。它的想法是设计一个可作内容寻址的记忆库,并让神经网络对其进行读写操作。NTM名字中的“图灵(Turing)”是表明,它是图灵完备(Turing complete)的,即具备基于它所读取的内容来读取、写入、修改状态的能力,也就是能表达一个通用图灵机所能表达的一切。

游客,如果您要查看本帖隐藏内容请回复


BiRNN、BiLSTM、BiGRU

双向循环神经网络(BiRNN:Bidirectional recurrent neural networks)、双向长短期记忆网络(BiLSTM:bidirectional long / short term memory networks )和双向门控循环单元(BiGRU:bidirectional gated recurrent units)在图表中并未呈现出来,因为它们看起来与其对应的单向神经网络结构一样。

所不同的是,这些网络不仅与过去的状态有连接,而且与未来的状态也有连接。比如,通过一个一个地输入字母,训练单向的LSTM预测“鱼(fish)”(在时间轴上的循环连接记住了过去的状态值)。在BiLSTM的反馈通路输入序列中的下一个字母,这使得它可以了解未来的信息是什么。这种形式的训练使得该网络可以填充信息之间的空白,而不是预测信息。因此,它在处理图像时不是扩展图像的边界,而是填补一张图片中的缺失。

游客,如果您要查看本帖隐藏内容请回复


深度残差网络(DRN)

17.jpg

深度残差网络(DRN: Deep residual networks)是非常深的FFNN网络,它有一种特殊的连接,可以把信息从某一神经细胞层传至后面几层(通常是2到5层)。

该网络的目的不是要找输入数据与输出数据之间的映射,而是致力于构建输入数据与输出数据+输入数据之间的映射函数。本质上,它在结果中增加一个恒等函数,并跟前面的输入一起作为后一层的新输入。结果表明,当层数超过150后,这一网络将非常擅于学习模式,这比常规的2到5层要多得多。然而,有证据表明这些网络本质上只是没有时间结构的RNN,它们总是与没有门结构的LSTM相提并论。

游客,如果您要查看本帖隐藏内容请回复


回声状态网络(ESN)

18.jpg

回声状态网络(ESN:Echo state networks)是另一种不同类型的(循环)网络。

它的不同之处在于:神经元之间的连接是随机的(没有整齐划一的神经细胞层),其训练过程也有所不同。不同于输入数据后反向传播误差,ESN先输入数据、前馈、而后更新神经元状态,最后来观察结果。它的输入层和输出层在这里扮演的角色不太常规,输入层用来主导网络,输出层作为激活模式的观测器随时间展开。在训练过程中,只有观测和隐藏单元之间连接会被改变。

游客,如果您要查看本帖隐藏内容请回复


极限学习机(ELM)

19.jpg

极限学习机(ELM:Extreme learning machines)本质上是拥有随机连接的FFNN。

它们与LSM、ESN极为相似,除了循环特征和脉冲性质,它们还不使用反向传播。相反,它们先给权重设定随机值,然后根据最小二乘法拟合来一次性训练权重(在所有函数中误差最小)。这使ELM的函数拟合能力较弱,但其运行速度比反向传播快多了。

游客,如果您要查看本帖隐藏内容请回复


液态机(LSM)

20.jpg

液态机(LSM:Liquid state machines)换汤不换药,跟ESN同样相近。

区别在于,LSM是一种脉冲神经网络(spiking neural networks),用阈值激活函数(threshold functions)取代了sigmoid激活函数,每个神经元同时也是具有累加性质的记忆单元。因此,当神经元状态更新时,其值不是相邻神经元的累加值,而是它自身状态值的累加。一旦累加到阈值,它就释放能量至其它神经元。这就形成了一种类似于脉冲的模式:神经元不会进行任何操作,直至到达阈值的那一刻。

游客,如果您要查看本帖隐藏内容请回复


支持向量机(SVM)

21.jpg

支持向量机(SVM:Support vector machines)能为分类问题找出最优方案。

传统意义上,它们只能处理线性可分的数据;比如找出哪张图片是加菲猫、哪张是史努比,此外就无法做其它输出了。

训练过程中,SVM可以理解为:先在平面图表上标绘所有数据(加菲猫、史努比),然后找出到那条能够最好区分这两类数据点的线。这条线能把数据分为两部分,线的这边全是史努比,线的那边全是加菲猫。而后移动并优化该直线,令两边数据点到直线的距离最大化。分类新的数据,则将该数据点画在这个图表上,然后察看这个数据点在分隔线的哪一边(史努比一侧,还是加菲猫一侧)。

通过使用核方法,SVM便可用来分类n维空间的数据。这就引出了在3维空间中标绘数据点,从而让SVM可以区分史努比、加菲猫与西蒙,甚至在更高的维度对更多卡通人物进行分类。SVM并不总被视为神经网络。

游客,如果您要查看本帖隐藏内容请回复


Kohonen 网络

22.jpg

最后,我们来介绍一下Kohonen网络(KN,也称之为自组织(特征)映射(SOM/SOFM:self organising (feature) map))。

KN利用竞争学习来对数据进行分类,不需要监督。先给神经网络一个输入,而后它会评估哪个神经元最匹配该输入。然后这个神经元会继续调整以更好地匹配输入数据,同时带动相邻的神经元。相邻神经元移动的距离,取决于它们与最佳匹配单元之间的距离。KN有时也不被认为是神经网络。

游客,如果您要查看本帖隐藏内容请回复


阅读:
多图|一文看懂25个神经网络模型(一)
http://www.narkii.com/club/thread-417942-1.html

多图|一文看懂25个神经网络模型(二)
http://www.narkii.com/club/thread-417941-1.html



分享到: QQ好友和群QQ好友和群 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
转播转播0 分享淘帖0 收藏收藏0 支持支持0 反对反对0
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

关闭

站长推荐上一条 /1 下一条

手机版|纳金网 ( 闽ICP备08008928号

GMT+8, 2024-4-26 23:39 , Processed in 0.100196 second(s), 34 queries .

Powered by Discuz!-创意设计 X2.5

© 2008-2019 Narkii Inc.

回顶部